<u>Revision – Unit5 Trigonometry</u>

(Angles between 0° and 90°, The general definition of an angle, Trigonometric ratios of general angles, Graphs of trigonometric functions, Inverse trigonometric functions, Trigonometric equations ,Trigonometric identities, Further trigonometric equations)

(a) It is given that β is an angle between 90° and 180° such that $\sin \beta = a$.

Express $\tan^2 \beta - 3 \sin \beta \cos \beta$ in terms of a.

Nov/9
709/11
[3] $\frac{709}{11}$ Q8

(b) Solve the equation $\sin^2 \theta + 2\cos^2 \theta = 4\sin \theta + 3$ for $0^\circ < \theta < 360^\circ$. [5]

Nov/9 709/12 /2024/ Q1

The diagram shows the curve with equation $y = a \sin(bx) + c$ for $0 \le x \le 2\pi$, where a, b and c are positive constants.

(a) State the values of a, b and c. [3]

(b) For these values of a, b and c, determine the number of solutions in the interval $0 \le x \le 2\pi$ for each of the following equations:

(i)	$a\sin(bx) + c = 7 - x$	[1]
		•••••
(ii)	$a\sin(bx) + c = 2\pi(x-1).$	[1]

Find the exact solution of the equation

$$\cos\frac{1}{6}\pi + \tan 2x + \frac{\sqrt{3}}{2} = 0 \text{ for } -\frac{1}{4}\pi < x < \frac{1}{4}\pi.$$
[2] 709/13
/2024/
Q2

Nov/9

Solve the equation
$$4\sin^4\theta + 12\sin^2\theta - 7 = 0$$
 for $0^{\circ} \le \theta \le 360^{\circ}$. [4] Nov/9 709/13 /2024/ Q4

June/9 709/11 /2024/ Q2

The diagram shows two curves. One curve has equation $y = \sin x$ and the other curve has equation y = f(x).

- (a) In order to transform the curve $y = \sin x$ to the curve y = f(x), the curve $y = \sin x$ is first reflected in the x-axis.
 - Describe fully a sequence of two further transformations which are required.

(b) Find f(x) in terms of $\sin x$.

[4]

(a) Prove the identity
$$\frac{\sin^2 x - \cos x - 1}{1 + \cos x} \equiv -\cos x.$$

[3]

(b) Hence solve the equation
$$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$$
 for $0^\circ \le x \le 360^\circ$.

(a) Show that the equation
$$\frac{7 \tan \theta}{\cos \theta} + 12 = 0$$
 can be expressed as
$$\frac{7 \tan \theta}{709/12}$$

$$12 \sin^2 \theta - 7 \sin \theta - 12 = 0.$$
[3] June/9
$$\frac{709/12}{2024/}$$

$$Q3$$

(b) Hence solve the equation
$$\frac{7 \tan \theta}{\cos \theta} + 12 = 0$$
 for $0^{\circ} \le \theta \le 360^{\circ}$. [3]

(a)

June/9 709/13 /2024/ Q2

The diagram shows the curve $y = k\cos(x - \frac{1}{6}\pi)$ where k is a positive constant and x is measured in radians. The curve crosses the x-axis at point A and B is a minimum point.

Find the coordinates of A and B.

[3]

(b) Find the exact value of t that satisfies the equation

$$3\sin^{-1}(3t) + 2\cos^{-1}\left(\frac{1}{2}\sqrt{2}\right) = \pi.$$
 [2]

March /9709/ 12/202 4/Q2

The diagram shows part of the curve with equation $y = k \sin \frac{1}{2}x$, where k is a positive constant and x is measured in radians. The curve has a minimum point A.

(a) State the coordinates of A.

[1]

(b) A sequence of transformations is applied to the curve in the following order.

Translation of 2 units in the negative y-direction

Reflection in the x-axis

Find the equation of the new curve and determine the coordinates of the point on the new curve corresponding to A. [3]

(a) Prove that
$$\frac{(\sin\theta + \cos\theta)^2 - 1}{\cos^2\theta} \equiv 2\tan\theta$$
. [3] March /9709/12/202 4/Q4

(b) Hence solve the equation
$$\frac{(\sin \theta + \cos \theta)^2 - 1}{\cos^2 \theta} = 5 \tan^3 \theta \text{ for } -90^\circ < \theta < 90^\circ.$$
 [3]