Revision – Unit2 Functions

(Type of Functions, The Domain and Range of a function, Inverse Functions, Composite Functions, Transformations of functions)

(b) The graph of y = f(x) is transformed to the graph of y = h(x) by a reflection in one of the axes followed by a translation. It is given that the graph of y = h(x) has a minimum point at the origin.

Give details of the reflection and translation involved.

[2]

The function g is defined by $g(x) = 3 + 6x - 2x^2$ for $x \le 0$.

(c) Sketch the graph of y = g(x) and explain why g is a one-one function. You are **not** required to find the coordinates of any intersections with the axes. [2]

(d) Sketch the graph of $y = g^{-1}(x)$ on your diagram in (c), and find an expression for $g^{-1}(x)$. You should label the two graphs in your diagram appropriately and show any relevant mirror line.

The function f is defined by
$$f(x) = \frac{2x+1}{2x-1}$$
 for $x < \frac{1}{2}$.

Nov 2024 /12/Q5

(a) (i) State the value of f(-1).

The diagram shows the graph of y = f(x). Sketch the graph of $y = f^{-1}(x)$ on this diagram. Show any relevant mirror line. [2]

(iii) Find an expression for $f^{-1}(x)$ and state the domain of the function f^{-1} . [4]

The function g is defined by g(x) = 3x + 2 for $x \in \mathbb{R}$.

(b) Solve the equation
$$f(x) = gf(\frac{1}{4})$$
.

[3]

The function $f(x) = 3x^2 - 12x + 14$ is defined for $x \ge k$, where k is a constant.

Nov 2024

(b) Find the least value of k for which the function f^{-1} exists.

[1]

/13/Q8

For the rest of this question, you should assume that k has the value found in part (b).

(c) Find an expression for $f^{-1}(x)$.

[3]

(d) Hence or otherwise solve the equation $ff(x) = 29$.				

The functions f and g are defined for all real values of x by

$$f(x) = (3x-2)^2 + k$$
 and $g(x) = 5x-1$,

Mar20 24 /12/Q9

[4]

[3]

where k is a constant.

(a) Given that the range of the function gf is gf $(x) \ge 39$, find the value of k.

(b) For this value of k, determine the range of the function fg.

(c) The function h is defined for all real values of x and is such that gh(x) = 35x + 19.

Find an expression for $g^{-1}(x)$ and hence, or otherwise, find an expression for h(x). [3]

May20 24 /11/Q6

The function f is defined by $f(x) = \frac{2}{x^2} + 4$ for x < 0. The diagram shows the graph of y = f(x).

- (a) On this diagram, sketch the graph of $y = f^{-1}(x)$. Show any relevant mirror line. [2]
- (b) Find an expression for $f^{-1}(x)$. [3]

(c) Solve the equation
$$f(x) = 4.5$$
. [1]

(d) Explain why the equation
$$f^{-1}(x) = f(x)$$
 has no solution. [1]

The function f is defined as follows:

May20

$$f(x) = \sqrt{x} - 1 \text{ for } x > 1.$$
 24 /12/Q4

(a) Find an expression for $f^{-1}(x)$. [1]

The diagram shows the graph of y = g(x) where $g(x) = \frac{1}{x^2 + 2}$ for $x \in \mathbb{R}$.

(b) State the range of g and explain whether g^{-1} exists.

[2]

The function h is defined by $h(x) = \frac{1}{x^2 + 2}$ for $x \ge 0$.

(c) Solve the equation $hf(x) = f\left(\frac{25}{16}\right)$. Give your answer in the form $a + b\sqrt{c}$, where a, b and c are integers. [4]

The function f is defined by $f(x) = 10 + 6x - x^2$ for $x \in \mathbb{R}$.

May20 23

(a) By completing the square, find the range of f.

[3] /12/ Q11

The function g is defined by g(x) = 4x + k for $x \in \mathbb{R}$ where k is a constant.

(b) It is given that the graph of $y = g^{-1} f(x)$ meets the graph of y = g(x) at a single point P.

Determine the coordinates of P.

[6]

A function f is defined by $f(x) = x^2 - 2x + 5$ for $x \in \mathbb{R}$. A sequence of transformations is applied in the following order to the graph of y = f(x) to give the graph of y = g(x).

Mar20 24 /13/

Q2

Stretch parallel to the x-axis with scale factor $\frac{1}{2}$

Reflection in the y-axis

Stretch parallel to the y-axis with scale factor 3

Find g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants. [4]

The function f is defined by $f(x) = -3x^2 + 2$ for $x \le -1$.

Mar20 23

(a) State the range of f.

[1] /12/ Q9

[3]

The function g is defined by $g(x) = -x^2 - 1$ for $x \le -1$.

(c) Solve the equation
$$fg(x) - gf(x) + 8 = 0$$
.

[5]

A function f is defined by $f(x) = x^2 - 2x + 5$ for $x \in \mathbb{R}$. A sequence of transformations is applied in the following order to the graph of y = f(x) to give the graph of y = g(x).

Mar20 23 /12/

Q2

Stretch parallel to the x-axis with scale factor $\frac{1}{2}$

Reflection in the y-axis

Stretch parallel to the y-axis with scale factor 3

Find g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants. [4]

The graph with equation y = f(x) is transformed to the graph with equation y = g(x) by a stretch in the x-direction with factor 0.5, followed by a translation of $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Nov20 22 /12/ Q5

(a) The diagram below shows the graph of y = f(x).

On the diagram sketch the graph of y = g(x).

[3]

(b) Find an expression for g(x) in terms of f(x).

[2]

(a)	Express $f(x)$ in the form $-2(x+a)^2 + b$, where a and b are integers.	[2]	Nov20 22
			/13/ Q2
(b)	Find the range of f.	[1]	
		••••	
(c)	Find an expression for $f^{-1}(x)$.	[3]	

Functions f and g are defined as follows:

bllows: June 20

$$f(x) = \frac{2x+1}{2x-1}$$
 for $x \neq \frac{1}{2}$, Q
 $g(x) = x^2 + 4$ for $x \in \mathbb{R}$.

[2]

(a)

The diagram shows part of the graph of y = f(x).

(c) Find $gf^{-1}(3)$.

State the domain of f^{-1} .	[1]
Find an expression for $f^{-1}(x)$.	[3]

(d)	Explain why $g^{-1}(x)$ cannot be found.	[1	

(e) Show that $1 + \frac{2}{2x - 1}$ can be expressed as $\frac{2x + 1}{2x - 1}$. Hence find the area of the triangle enclosed by the tangent to the curve y = f(x) at the point where x = 1 and the x- and y-axes. [6]

The functions f and g are defined by

$$f(x) = x^2 \quad \text{for } x \in \mathbb{R},$$

$$g(x) = 2x^2 - 8x + 14 \quad \text{for } x \in \mathbb{R}.$$

Mar20

22 /12/ Q5

(b) Describe fully a sequence of transformations that maps the graph of y = f(x) onto the graph of y = g(x), making clear the order in which the transformations are applied. [4]

The one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$.

(b) State the largest possible value of the constant k.

[1] Nov20 21 /11/Q8

It is now given that k = -1.

(c) State the range of f.

[1]

(d) Find an expression for $f^{-1}(x)$. [3]

- The result of translating the graph of y = f(x) by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of y = g(x).
- (e) Express g(x) in the form $px^2 + qx + r$, where p, q and r are constants. [3]

The function f is defined as follows:

$$f(x) = \frac{x+3}{x-1} \text{ for } x > 1.$$
Nov20
21
/12/
Q3

- (a) Find the value of ff(5). [2]
- (b) Find an expression for $f^{-1}(x)$. [3]

Nov20 21 /13/ Q6

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of
$$y = f^{-1}(x)$$
. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4-x^2}}$ where -2 < x < 2.

- (b) Find an expression for $f^{-1}(x)$. [4] The function g is defined by g(x) = 2x for -a < x < a, where a is a constant.
- (c) State the maximum possible value of a for which fg can be formed. [1]
- (d) Assuming that fg can be formed, find and simplify an expression for fg(x). [2]

Fun	Functions f and g are defined as follows:			Nov20
		$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$ $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$		21 /13/ Q6
whe	re a is a constant.			
(a)	State the range of f.		[1]	
(b)	Find $f^{-1}(x)$.		[2]	