(a)	Use $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$			Bi	E.	.g. $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$ and then replaces $\sin^2 \beta$	Nov/9
	cos- B				1	$\cos^{-}\beta$ ith a^2 or $\cos^2\beta$ with $1-a^2$.	709/11 /2024/
	$\cos \beta = -\sqrt{1 - a^2}$			B1	T	-	Q8
	Obtain $\frac{a^2}{1-a^2} + 3a\sqrt{1-a^2}$			B1			
(ь)	Use correct identity to obtain 3-term quadratic equation in $\sin \theta$			3 *M			
	Obtain $\sin^2\theta + 4\sin\theta + 1[=0]$				1		
	Attempt to solve quadratic			DM	[1	At least as far as $\frac{-4\pm\sqrt{12}}{2}$.	
						-15.5° implies attempt at solving quadratic.	
	Obtain 195.5			A	1		
	Obtain 344.5			A1F	Т	Following first answer; and no others for $0^{\circ} < \theta < 360^{\circ}$ but must be in 4^{th} quadrant. SC B1 for 3.41° and 6.01° .	
					5		
l(a)	a=4			Allow $4\sin(2x) + 3$ if values of a , b and c are not stated.		Nov/9	
	b=2			ı			709/12 /2024/
	c=3			1			Q1
				3			
(b)(i)	5		В	Igno	re a	attempts at finding solutions.	
b)(ii)	1			Ignore attempts at finding solutions.			
				ı			N I /0
$\cos\left(\frac{\pi}{6}\right) + \tan 2x + \frac{\sqrt{3}}{2} = 0 \implies \tan 2x = -\sqrt{3}$			M1	Making $\tan 2x$ the subject. $\tan 2x = 0$ is M0. Accept decimals and one sign error.		Nov/9 709/13 /2024/	
$\Rightarrow 2x = -\frac{\pi}{3} \Rightarrow x = -\frac{\pi}{6}$			A1	May come from non-exact working. Ignore answers outside the given range.		Q2	
			2				
Let $x = \sin^2 \theta$ $(2x+7)(2x-1) = 0$ or $(2\sin^2 \theta + 7)(2\sin^2 \theta - 1)$		M	1 Or	r equivalent method.		Nov/9 709/13	
$\Rightarrow \sin^2 \theta = \frac{1}{2} \Rightarrow \sin \theta = [\pm] \frac{1}{\sqrt{2}}$		M	1 Fin	ading $\sin^2 \theta$ and then $\sin \theta$ (may be implied).		/2024/ Q4	
$\theta = 45$	°, 135°, 225°, 315°	A1 A	Al Fo	for all	l co ers	wo correct values. breet and no others within the range. in radians, A1 only for all 4 angles. t) working, then SC B1 for all 4 solutions.	
			4				

(a)	{Stretch} {factor 3} { in y-direction}		B2,1	,0	2 out of 3 scores B1.	June/9	
	$\{Translation\}$ $\begin{pmatrix} \{0\} \\ \{-2\} \end{pmatrix}$,0	Accept shift.	709/11 /2024/ Q2	
	Alternative Method for Question 2(a)						
	$\{\text{Translation}\} \left(\begin{cases} \{0\} \\ \left\{ -\frac{2}{3} \right\} \right)$				2 out of 3 scores B1. Accept shift.		
	{Stretch} {factor 3} { in y-direction}		(B2,1,0	0)			
				4			
(b)	$[f(x)] = \{-3\sin x\}\{-2\}$		B1 B	31	No marks awarded if extra terms seen.		
				2		7 /0	
(a)	$\frac{\sin^2 x - \cos x - 1}{1 + \cos x} = \frac{1 - \cos^2 x - \cos x - 1}{1 + \cos x} \text{ or } \frac{-\cos^2 x - \cos x}{1 + \cos x}$	M		For use of $\sin^2 x + \cos^2 x = 1$. Allow use of s, c, t or omission of x throughout.		June/9 709/11	
	$=\frac{-\cos x \left(1+\cos x\right)}{1+\cos x}$	M	For fa	or factorising.		/2024/ Q5	
	= -cos <i>x</i>	A	ı				
		:	3				
(b)	$-\frac{1}{2}\cos x = \frac{1}{4} \Rightarrow x = \cos^{-1}\left(-\frac{1}{2}\right)$	M	ı				
	$x = 120^{\circ} \text{ or } x = 240^{\circ}$	A	ı				
		A1 F7	I		If for 360 – their answer. A1 A0 if extra solution(s) in the for 360 – their answer in radians for both $\frac{2\pi}{3}$, $\frac{4\pi}{3}$.		
		1 .	,				
i(a)	$7\frac{\sin\theta}{\cos\theta} + \cos\theta + 12[=0] \left[\text{leading to } 7\frac{\sin\theta}{\cos\theta} + 12\cos\theta = 0 \right]$		M1*	OE Use	$e ext{ of } an heta = rac{\sin heta}{\cos heta}.$	June/9 709/12 /2024/	
	$7\sin\theta + 12(1-\sin^2\theta)[=0]$		DM1	Use	$e ext{ of } s^2 + c^2 = 1.$	Q3	
	$\Rightarrow 12\sin^2\theta - 7\sin\theta - 12 = 0$		A1	Cor	i, WWW indone use of s, c and t and/or omission of θ oughout working but the A1 is for cao.		
			3				
(ь)	$[12\sin^2\theta - 7\sin\theta - 12 = 0 \text{ leading to}](4\sin\theta + 3)(3\sin\theta - 4)$		MI				
	$\sin \theta = -\frac{3}{4} \left[\text{ or } \frac{4}{3} \right]$			OE,	, www		
	4 [- 3]				in the implied by a correct value for $\sin^{-1}\left(-\frac{3}{4}\right)$ -48.6° .		
	[θ =]228.6°,311.4°		B1	AW No Ign	VRT, WWW others in the range 0° ≤ 0 ≤ 360°. sore any answers outside this range. Indone 229°, 311°.		
			3				

	State $(\frac{5}{3}\pi, 0)$ for point A $x = \frac{19}{6}\pi \text{ for point } B$			Or exact equivalent. Allow $x = \frac{5}{2}\pi$ or exact equivalent.	June/9 709/13 /2024/ Q2	
			Bi	Or exact equivalent. May be implied in coordinate or vector form.		
	y = -k for point B		B1	May be implied in coordinate or vector form.		
			3			
(b)	Solve at least as far as $\sin^{-1} 3t = k\pi$ with correct value for $\cos^{-1} \left(\frac{1}{2} \sqrt{2} \right)$		MI	Allow use of $\pi = 3.14$ Allow $\sin^{-1} 3t = 30$.		
	$\sin^{-1} 3t = \frac{1}{6}\pi$ and hence $t = \frac{1}{6}$			Or exact equivalent. Can use degrees if consistent.		
			2			
(a)	State $(3\pi, -k)$		B1		March /9709/ 12/202	
			1			
(Ь)	Obtain equation of form $[y=]c \pm k \sin \frac{1}{2}x$		M1	Any non-zero c.	4/Q2	
	Obtain correct equation $[y=]2-k\sin\frac{1}{2}x$		A1	OE		
	State $(3\pi, 2+k)$		FT	Following part (a), i.e. (their x, 2 – their y).		
			3			
(a)	Expand bracket to obtain 3 terms and use correct identity		M1	θ may be missing or another symbol used.	March	
	Use identity $\frac{\sin \theta}{\cos \theta} = \tan \theta$		M1	Does not require any further explanation. θ may be missing or another symbol used.	/9709/ 12/202 4/Q4	
	Conclude with $2 \tan \theta$		A1	WWW AG		
(b)	Attempt solution of $5 \tan^3 \theta = 2 \tan \theta$ to obtain at least one value of $\tan \theta$	 M1		In the awarded if $tan \theta$ is cancelled and ignored.		
	Obtain at least two of 0, ±32.3	A1		greater accuracy. B1 if no method shown.		
	Obtain all three values	Al	ran; Oth	Or greater accuracy; and no others in -90° < \theta < 90° range. Other units SC B1 only for all 3 angles. SC B1 if no method shown.		
		3				