(a)	Attempt correct process for solving 3-term quadratic equation in \sqrt{x}	M1	Accept 8y ² specified.	- 6y -	$-9 \rightarrow (2y-3)($	$4y + 3$), if $y = \sqrt{x}$	Nov/ 11
	Obtain at least $2\sqrt{x} - 3 = 0$ or equivalent	1 1	Ignore 4 √				/202
					2	thod shown for	4
					n quadratic.		/Q5
	Conclude $x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	quadratic.	o meth	nod shown for	solving the 3-term	
	Alternative Method for Q5(a)						
	$3\sqrt{x} = 4x - \frac{9}{2} \rightarrow 16x^2 - 45x + \frac{81}{4}$ o.e and attempt correct process to solve	M1					
	Obtain $x = \frac{9}{4}$ or $\frac{9}{16}$	A1	SC B1 if n quadratic.	o meth	nod shown for	solving the 3-term	
	$x = \frac{9}{4} \text{ ignore } \frac{9}{16}$	A1	SC B1 if n quadratic.	o meth	nod shown for	solving the 3-term	
		3					
(b)	Integrate to obtain form $k_1 x^2 + k_2 x^{\frac{3}{2}} + k_3 x$ where $k_1 k_2 k_3 \neq 0$	M1					
	Obtain correct $2x^2 - 2x^{\frac{3}{2}} + x$ or equivalent	A1	Allow ur	simpl	ified.		
	Substitute $x=4$ and $y=11$ to attempt value of c	M1	Depende	nt on a	at least 2 corre	et terms involving x.	
	Obtain $y = 2x^2 - 2x^{\frac{3}{2}} + x - 9$	A1	Allow 'f	(x) = .			
			Allow y	missin	ig if y appears	previously.	
		4	I				
(a)	State or imply centre of C_1 is $(-3, 5)$					B1	Nov/ 11/2
	State or imply centre of C_2 is $(9, -4)$					B1	024 /Q6
	Attempt correct process for finding distance between centres				N	и1	700
	Obtain 15					A1	
						4	
(b)	R=4 and $R=8$		B1				
	Obtain least or greatest distance			'15'	$-R_1-R_2$ or	'15' + R ₁ + R ₂ .	
	Obtain 3 and 27		B1 FT	'15'	- R ₁ - R ₂ and	1 '15' + R ₁ + R ₂ .	
			3				
(a)	Differentiate to obtain form $k_1(2x+1)^{-\frac{4}{3}}$		N	11			Nov/ 11/
	Obtain correct $-8(2x+1)^{-\frac{4}{3}}$ or unsimplified equivalent		A	.1			2024 /Q7
	Attempt equation of tangent at $\left(\frac{7}{2}, 6\right)$ with numerical gradient		N		Gradient must expression.	come from a differentiate	ed
	Obtain $y = -\frac{1}{2}x + \frac{31}{4}$ or equivalent of requested form		A	.1			
				4			_

(b)	Integrate to obtain form $k_2(2x+1)^{\frac{2}{3}}$		M1		
	Obtain correct $9(2x+1)^{\frac{2}{3}}$ or unsimplified equivalent		A1		
	Use correct limits correctly to find area		M1	Substitute correct limits into an integrated expression. 36 – 9 minimum working required.	
	Obtain 27	_	A1	SC B1 if M1 A1 M0 scored.	
(a)	$[f(2+h)=] 2(2+h)^2 -3$	B1	SOI	<u> </u>	Nov/
	$\frac{\left(2(2+h)^2-3\right)-5}{(2+h)-2} \left[=\frac{2h^2+8h}{h}\right]$	M1	simpli	$\frac{(2(2+h)^2-3)-their5}{(2+h)-2}$ can be implied by the field expression or the correct answer. 5 must come from $2(2)^2-3$.	12/ 2024 /Q3
	2h+8 or 2(h+4)	A1			
		3			
(b)	$h \rightarrow 0$, or chord [AB] \rightarrow tangent [at A]	B1	Either	of these statements or any sight of $h = 0$.	
	8	BIFT		come from anywhere except wrong working. correct or FT their linear expression from (a).	
		2	<u> </u>		
3(a)	$\left(x-\left(-\frac{1}{2}p\right)\right)^2+\left(y-\left(-1\right)\right)^2 \text{ OE}$	B1*	Allov	$v \ a = -\frac{1}{2} p$ and $b = -1$, or centre is $\left(-\frac{1}{2} p, -1\right)$.	Nov/ 12/ 2024
	$\left(x - \left(-\frac{1}{2}p\right)\right)^2 + \left(y - (-1)\right)^2 = -q + 1 + \left(-\frac{1}{2}P\right)^2 \text{ OE}$	DB	ı		/Q8
		2	2		
b)(i)	[Gradient of tangent =] $-\frac{1}{2}$	Bi	OE SOI		
	[Gradient of normal =] 2	M	Use o	of $m_1m_2 = -1$ with <i>their</i> numeric tangent gradient.	
	$\frac{y-3}{x-4} = 2 \left[y = 2x - 5 \right]$	A	ISW	$vy = 2x + c, 3 = 2 \times 4 + c \implies c = -5.$	
		:	3		

(b)(ii)	Method 1 for the first two marks:						
	$-1-3=2\left(-\frac{1}{2}p-4\right)$ or $-1=-p-5$	M1*	Using <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$ in <i>their</i> equation of the normal.				
	p = -4	A1					
	Method 2 for the first two marks:						
	$-1 = 2x - 5 \Rightarrow x = 2 \Rightarrow -\frac{1}{2}p = 2$	M1*	Using their normal equation and <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$.				
	p = -4	A1					
	Method 3 for the first two marks:						
	$2x + 2y\frac{dy}{dx} + p + 2\frac{dy}{dx} = 0 \left[\Rightarrow p = -8 - 8\frac{dy}{dx} \right]$	M1*					
	$\left[\frac{dy}{dx} = -\frac{1}{2} \Rightarrow\right] p = -4$	A1					
(b)(ii)	Method 1 for the last 3 marks:						
	$r^2 = (4-2)^2 + (3-(-1))^2 = 20$	M1*	Using (4, 3) and their centre or $\left(\frac{\pm their p}{2}, \pm 1\right)$ to find r^2 or r .				
	$-q + 1 + \frac{1}{4}p^2 = 20$	DM1	OE Using their expression for r ² (from (a)) equated to their 20.				
	q = -15	A1					
	Method 2 for the last 3 marks:						
	$r = \frac{ 2 - 2 - 10 }{\sqrt{5}} \left[= \frac{10}{\sqrt{5}} \right]$	M1*	Using $(2,-1)$ and $x+2y-10=0$ (distance from a point to a line).				
	. 1 . (10)2	DM1	OE				
	$-q+1+\frac{1}{4}p^2 = \left(\frac{10}{\sqrt{5}}\right)^2$		Using their expression for r^2 equated to their $\left(\frac{10}{\sqrt{5}}\right)^2$.				
	q = -15	A1					
	Method 3 for the last 3 marks:						
	$4^2 + 3^2 + 4p + 6 + q = 0$ [$\Rightarrow 4p + q + 31 = 0$] OR	M1*	Substituting (4,3) into their circle equation.				
	$\left(4 - \left(-\frac{1}{2}p\right)\right)^2 + \left(3 - (-1)\right)^2 = -q + 1 + \left(-\frac{1}{2}p\right)^2$						
	4(-4)+q+31=0	DM1	Substituting their $p = -4$.				
	q = -15	A1					

3(b)(ii)	Alternative Method for Question 8(b)(ii)						
	$4^{2} + 3^{2} + 4p + 6 + q = 0$ $x^{2} + (2x - 5)^{2} + px + 2(2x - 5) + q = 0 \text{ with } x = 4$ $x^{2} + \left(\frac{10 - x}{2}\right)^{2} + px + 2\left(\frac{10 - x}{2}\right) + q = 0 \text{ with } x = 4$ $\left(\frac{y + 5}{2}\right)^{2} + y^{2} + p\left(\frac{y + 5}{2}\right) + 2y + q = 0 \text{ with } y = 3$ $\left(10 - 2y\right)^{2} + y^{2} + p\left(10 - 2y\right) + 2y + q = 0 \text{ with } y = 3$ {Each of these $\Rightarrow 4p + q + 31 = 0$ }		M1*	Substituting (4, 3) into their circle equation, or replacing y with $2x-5$ from the normal equation, or replacing y with $\frac{10-x}{2}$ from the tangent equation, or replacing x with $\frac{y+5}{2}$ from the normal equation, or replacing x with $10-2y$ from the tangent equation, and using either $x=4$ or $y=3$ to form an equation in p and q.			
	$\frac{5}{4}x^{2} + (p-6)x + 35 + q = 0 \implies (p-6)^{2} - 4 \times \frac{5}{4} \times (35 + q) = 0$ OR $5y^{2} - y(38 + 2p) + 100 + 10p + q = 0 \implies (38 + 2p)^{2} - 4 \times 5 \times (100 + 10p + q) = 0$ {Each of these $\Rightarrow p^{2} - 12p - 139 - 5q = 0$ }			a quadratic equation in either x or y. Then using $b^2 - 4ac = 0$ on their quadratic to form an equation in p and q.			
	Solving the equations simultaneously to find p or q	I	M1				
	p = -4	\perp	A1				
	q = -15		A1				
(a)	Gradient of $AB = \frac{-5-3}{8-4} [=-2]$	M1*	5		Nov/ 13/ 2024		
	Midpoint $AB = \left(\frac{8+4}{2}, \frac{-5+3}{2}\right) \left[(6,-1)\right]$	M1			/Q10		
	Gradient of normal $=-\frac{1}{-2}\left[=\frac{1}{2}\right]$ and an attempt to find the required equation	DM1		ust be used to find equation of perpendicular through <i>their</i> 1).			
	Equation of perpendicular bisector is $y+1=\frac{1}{2}(x-6)$, so $y=\frac{1}{2}x-4$	A1		WW G – working involving the perpendicular bisector must be en.			
	Alternative Method for Question 10(a)						
	$AC^2 = (a-4)^2 + (b-3)^2$, $BC^2 = (a-8)^2 + (b+5)^2$ both expanded	M1*					
	Solving $AC = BC$ [= 10]	DM1	On	ly allow a single sign error.			
	Eliminating a^2 and b^2	DM1	Ma	y be awarded before the previous DM1.			
	$a=2b+8$, concluding $y=\frac{x}{2}-4$	A1	w	ww			
		4					

(b)	Using the centre as $\left(a, \frac{1}{2}a - 4\right)$		N	May see centre as $(2y + 8, y)$ OE. May be seen in an incorrect equation.	
	$(4-a)^2 + (3-0.5a+4)^2 = 100$		N	Sub in (4, 3) or (8, -5). Could use circle with (6,-1) and $r = \sqrt{80}$.	
	$1.25a^2 - 15a - 35 = 0$ $\Rightarrow a^2 - 12a - 28 = 0$ (or $b^2 + 2b - 15 = 0$))	DN	Obtain a 3-term quadratic in their x or y.	
	$[(a-14)(a+2)=0] \Rightarrow a=14, a=-2$			Or $[(b-3)(b+5)=[0]] \Rightarrow b=3, b=-5.$	
	$\Rightarrow (x-14)^2 + (y-3)^2 = 100 \text{ and } (x+2)^2 + (y+5)^2 = 100$		1	11	
	Alternative Method 1 for the first 3 marks:				
	Make a or b the subject from a circle centre (a,b) using A or B		N	E.g. $b = \sqrt{100 - (y - 3)^2} + 4$ from circle through A. These equations may have been found in part (a).	
	Form an equation in a or b only		N	Substitute <i>their a</i> or <i>b</i> into their second circle equation.	
	Simplify to a quadratic in a or b		DN	Expect $a^2 - 12a - 28 = 0$ or $b^2 + 2b - 15 = 0$, OE.	
	Alternative Method 2 for the first 3 marks:				
	Obtaining CM (C, centre; M, mid-point of AB)		N	Expect $\sqrt{80}$. Must be clear this is <i>CM</i> , not <i>AB</i> .	
	Using the triangle CMT , where CT is parallel to the x -axis, to find the vertical distance of C from M , MT		DN	Expect $MT = 4$.	
	Using the triangle CMT , where MT is parallel to the y-axis, to find the horizontal distance of C from M , CT		DN	Expect $CT = 8$.	
				5	
(x-3	$(x^2 + y^2)^2 + y^2 = 18$ $y = nx - 9$ leading to $(x - 3)^2 + (nx - 9)^2 = 18$		M1	Finding equation of tangent and substituting into circle equation. Must be $nx-9$.	June/ 11/ 2024
	$6x + 9 + m^2x^2 - 18mx + 81 = 18$ leading to -1) $x^2 - (6 + 18m)x + 72[= 0]$		М1	Brackets expanded and all terms collected on one side of the equation. May be implied in the discriminant. <i>m</i> cannot be numeric.	/Q10
(6+1	$(8m)^2 - 4(m^2 + 1) \times 72[=0]$	*	М1	Use of $b^2 - 4ac$. Not in quadratic formula. m cannot be numeric, c must be numeric.	
36m²	$+216m-252[=0]$ [leading to $m^2 + 6m - 7 = 0$]	D	М1	Simplifies to 3 term quadratic.	
m=1	or <i>m</i> =–7		A1	Condone no method for solving quadratic shown.	
m = 1	leading to $2x^2 - 24x + 72 = 0$ leading to $x = 6$	D	M1	Must be correct x for their quadratic.	
<i>m</i> = -	-7 leading to $50x^2 + 120x + 72 = 0$ leading to $x = -\frac{6}{5}$	D	M1	Must be correct x for their quadratic.	
(6,-3	$),\left(-\frac{6}{5},-\frac{3}{5}\right)$		A1		

Alteri	native Method 1 for first 4 marks of Question 10				
$\frac{ 3m- }{\sqrt{m}}$	$\frac{1(0)-9}{t^2+1}$	(M1)	1	the formula for the length of a perpendicular from t to a line.	
$\frac{ 3m- }{\sqrt{n}}$	$\frac{1(0)-9}{r^2+1} = \sqrt{18}$	(M1)	Equate the rad	es length of a perpendicular from a point to a line to lius.	
(3 m -	$-9)^2 = 18(m^2 + 1)$	(M1)	Square	es and clears the fraction.	
9 m² -	$54_m + 81 = 0$ [leading to $m^2 + 6m - 7 = 0$]	(M1)			
Alteri	native Method 2 for first 3 marks of Question 10				
(3 - x)	$(9 + 6_x - x^2)^{-1/2} = m$	(M1)			
			Difference m.	entiates implicitly or otherwise and equates $\frac{dy}{dx}$ to	
(1+m	$(x^2 - 6(1 + m^2)x + 9(1 - m^2)[= 0]$	(M1)		ets expanded and all terms collected on one side of uation. May be implied in the discriminant.	
36(1+	$(m^2)^2 - 4(1+m^2) \times 9(1-m^2)[=0]$	(M1)	Use of	$b^2 - 4ac.$	
		8			
'(a)	$(x-6)^2 + (2a-x+a)^2 = 18$		M1*	Replacing y with $2a - x$ in the circle equation, condone incorrect expansion before substitution.	June/ 12/
	$2x^2 - 12x - 6ax + 9a^2 + 36 - 18[= 0]$		A1	All terms collected on one side of the equation. May be implied by the discriminant.	2024 /Q7
	$(12+6a)^2-4\times2\times(9a^2+18)$ [=0]		DM1	Correct use of " b^2 — $4ac$ " from their 3 term quadratic equation in x , with an x term of the form $(m+na)x$ with both m and $n \neq 0$.	
	$-36a^2 + 144a[+0 = 0]$		A1		
	a = 0, a = 4		A1		
			5		
(b)	[Centre is] $(6, -4)$ or [Point of intersection is] $(9, -1)$		B1		
	[Gradient of diameter] =1		B1		
	y+4=x-6 or $y+1=x-9$ [leading to $y=x-10$]		B1FT	FT on <i>their</i> point of intersection or <i>their</i> centre with an x co-ordinate of ± 6 and gradient = 1.	
			3		

Alte	rnative Method 2: for the last 5 marks				June
ÂĈĪ	$P = \widehat{MAP} = \tan^{-1} \frac{4}{3}$ or identifying similar triangles <i>PMA</i> and <i>AMC</i>		(M1A1)	C is the circle centre, P is intersection of the two tangents, M is intersection of PC and the y-axis.	13/202
tan /	$MAP = \frac{PM}{4}, \frac{4}{3} = \frac{PM}{4}, PM = \frac{16}{3}$ or use of similar triangles		(M1A1)		/Q8
P is	$\left(\frac{-16}{3},-1\right)$		(A1)		
Alte	rnative Method 3: for the last 5 marks				
Pyth	agoras on triangle PAC , $PC^2 = PA^2 + AC^2$,		(M1)	Identifies the required 3 sides and sets up formula.	
PC ²	$=(PM+3)^2$, $PA^2 = PM^2 + 4^2$, $AC = \text{radius} = 5$		(A1)	Finds each side with two in terms of PM OE.	
(PM	$(+3)^2 = PM^2 + 4^2 + 5^2$ leads to $6PM = 32$, $PM = \frac{16}{3}$		(M1A1)	Sets up and solves equation.	
P is	$\left(\frac{-16}{3},-1\right)$		(A1)		
			8		
Diffe	erentiate to obtain form $kx(2x^2 - 5)^{-2}$	MI			Ma
Obta	in correct $-12x(2x^2-5)^{-2}$	Al	OE		h/ 12/
Subs	titute (2, 1) to obtain gradient $-\frac{24}{9}$	Al	OE e.	g. $-\frac{8}{3}$. Allow -2.67 .	202 /Q5
Appl	y negative reciprocal to their numerical gradient to obtain gradient of al	*MI	Must l	have been some attempt at differentiation. Expect $\frac{3}{8}$	
Atter	npt equation of normal using their gradient of the normal and (2, 1)	DMI	Expec	$y-1=\frac{3}{8}(x-2)$.	
Obta	in $3x-8y+2=0$ (allow multiples)	AI	Or equ	sivalent of requested form e.g. $8y-3x-2=0$.	
		6	<u> </u>		
a)	Attempt substitution for y in quadratic equation	*1	MI Or	substitution for x	Ma h/
	Obtain $5x^2 + 30x + 75 - k = 0$ or $5y^2 - 20y + 50 - k = 0$		OE OE	e.g. $x^2 + 6x + 15 - \frac{k}{5}$ (all terms gathered together).	12/
	Use $b^2 - 4ac = 0$ with their a, b and c	D		0' may be implied in subsequent working or the ver.	202 /Q7
	Obtain $900-20(75-k)=0$ or equivalent and hence $k=30$		AI	obtaining $400-20(50-k)=0$ and $k=30$.	
			4		
b)	Substitute their value of k in equation from part (a) and attempt solution	1	MI Exp	ect $5x^2 + 30x + 45[=0]$ or $5y^2 - 20y + 20[=0]$.	
	Obtain coordinates (-3, 2)		A1 SC	B1 only (-3, 2) without attempt at quadratic solution.	
			2		

(a)	Obtain gradient of relevant radius is -2	BI	
	Using $m_1m_2 = -1$ obtain the gradient of the tangent and use it to form a straight line equation for a line containing $(-6, 9)$	MI	m_1 must be from an attempt to find the gradient of the radius using the centre and the given point.
	Obtain $y = \frac{1}{2}x + 12$	Al	OE e.g. $y-9=\frac{1}{2}(x+6)$.
		3	
(b)	State or imply $(x+4)^2 + (y-5)^2 = 20$	BI	If $x^2 + y^2 - 2gx - 2fy + c = 0$ is used correctly with $(-g, -f) = (-4, 5)$ and $c = g^2 + f^2 - r^2$ then M1.
	Obtain $x^2 + y^2 + 8x - 10y + 21 = 0$	BI	Al if above method used.
		2	
)(c)	Substitute $x=0$ in equation of circle to find y-values 3 and 7 or state C to $AB=4$	BI	May be implied by $AB = 4$ or use of x-coordinate of C .
	Attempt value of θ either using cosine rule or via $\frac{1}{2}\theta$ using right-angled triangle	MI	Using their AB. If $\theta/2$ used, must be multiplied by 2.
	Obtain $\theta = 0.9273$	AI	Or greater accuracy. A correct answer implies the M1.
(d)	Attempt are length using $r\theta$ formula with their θ (not their $\theta/2$) and $r = \sqrt{20}$	MI	Expect 4.15.
	Obtain perimeter = 8.15 or greater accuracy	AI	Condone missing units or incorrect units.
	Attempt area using $\frac{1}{2}r^2(\theta - \sin \theta)$ formula or equivalent with their θ and $r = \sqrt{20}$	MI	If sector – triangle used, both formulae must be correct. If triangle ACM used, area must be multiplied by 2.
	Obtain area = 1.27 or greater accuracy	AI	Condone missing units or incorrect units.
		4	