## Revision - Unit1 Quadratics (5types)

1- Completing the square  $(a+b)^2 = a^2 + 2ab + b^2$ 

(a) Express  $3x^2 - 12x + 14$  in the form  $3(x+a)^2 + b$ , where a and b are constants to be found. [2]

 $3x^2 - 12x - 14$   $3(x^{-2})^2 + 2$ 

Nov

2024 /13/Q8

Nov 2024

/12/Q7

$$3(x^{2}-4x+4-4) + 14$$

$$3(x^{2}-4x+4)-12+14$$

$$3(x^{2}-2)^{2}+2$$

$$3x^{2}-12x+14 = 3(x+a)^{2}+b$$

$$= 3(x^{2}+2ax+a^{2})+b$$

$$3x^{2}-12x+14 = 3x^{2}+6ax+3a^{2}+b$$

$$3a^{2}+b=14$$

$$6a=-12$$

$$b=14-12=2$$

(a) By expressing  $-2x^2 + 8x + 11$  in the form  $-a(x-b)^2 + c$ , where a, b and c are positive integers, find the coordinates of the vertex of the graph with equation  $y = -2x^2 + 8x + 11$ . [3]

a (2 + p) + 9 (-(-b), c) (b, c)

| (a) Express $3y^2 - 12y - 15$ in the form $3(y+a)^2 + b$ , where a and b are constants.                                          | [2]       | June<br>2024<br>/12/Q3 |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
| (a) Express $4x^2 - 24x + p$ in the form $a(x+b)^2 + c$ , where a and b are integers and c is to be gin terms of the constant p. | given [2] | June<br>2023<br>/12/Q3 |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |
|                                                                                                                                  |           |                        |

| (a) Express $x^2 - 8x + 11$ in the form $(x + p)^2 + q$ where p and q are constants. | [2] | June202<br>2  |
|--------------------------------------------------------------------------------------|-----|---------------|
|                                                                                      |     | /11/Q1        |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
| (a) Express $2x^2 - 8x + 14$ in the form $2[(x-a)^2 + b]$ .                          | [2] | March<br>2022 |
| 2 [ 22-472 +7)                                                                       |     | /12/Q5        |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |
|                                                                                      |     |               |

| (a) | Express $-3x^2 + 12x + 2$ in the form $-3(x - a)^2 + b$ , where a and b are constants. | [2] | Nov202<br>1<br>/11/Q8 |
|-----|----------------------------------------------------------------------------------------|-----|-----------------------|
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     | N. 202                |
| (a) | Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$ , where a and b are constants.  | [2] | Nov202<br>1<br>/13/Q3 |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |
|     |                                                                                        |     |                       |

(a) Express  $16x^2 - 24x + 10$  in the form  $(4x + a)^2 + b$ . [2]  $\int_{1/(12/Q1)}^{June 202} 1$ 

(b) Hence find the exact solutions of the equation 
$$3x^4 - 12x^2 - 15 = 0$$
.

Put  $y = x^2$ 

$$3y^2 - 12y - 15 = 0$$

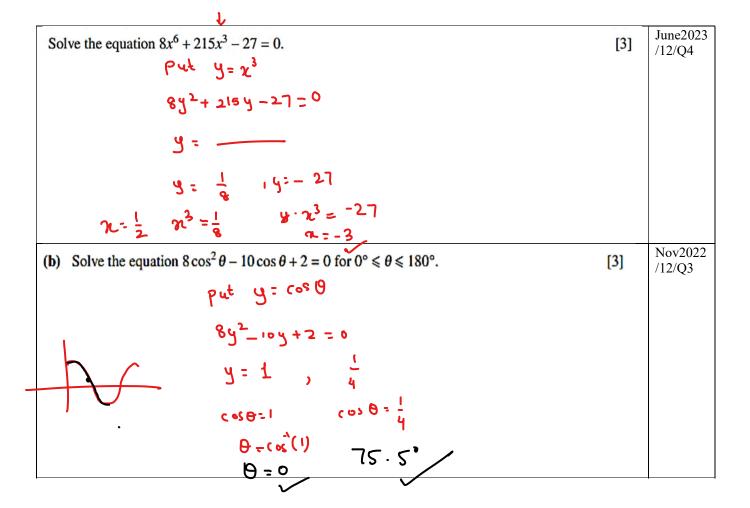
$$y = -(-12) \pm \sqrt{(-12)^2 - 4 \times 3 \times (-15)}$$

$$2 \times 3$$

$$y = 5$$

$$2 \times 3$$

$$2 = 5$$


$$2^2 = 5$$

$$2^2 = 5$$

$$2 = \pm \sqrt{5} - 18$$

| (1 | b) Hence find the exact solutions of the equation $x^2 - 8x + 11 = 1$ . | [2] | June2022<br>/11/Q1 |
|----|-------------------------------------------------------------------------|-----|--------------------|
|    | x2-8n+10=0                                                              |     |                    |
|    |                                                                         |     |                    |
|    |                                                                         |     |                    |
|    |                                                                         |     |                    |
|    |                                                                         |     |                    |
|    |                                                                         |     |                    |
|    |                                                                         |     |                    |

## 3- Solving more complex quadratic equations

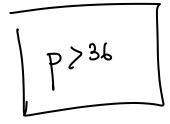


(a) Solve the equation 
$$6\sqrt{y} + \frac{2}{\sqrt{y}} - 7 = 0$$
.

$$6y+2-74y=0$$
.  
 $6y-74y+2=0$ 

put 
$$x = \sqrt{y}$$
  
 $6x^2 - 7x + 2 = 0$   
 $\Rightarrow y = \frac{1}{4}, \quad y = \frac{4}{9}$ 

(b) Hence solve the equation 
$$6\sqrt{\tan x} + \frac{2}{\sqrt{\tan x}} - 7 = 0$$
 for  $0^{\circ} \le x \le 360^{\circ}$ .


$$tanx = \frac{1}{4}$$
 ,  $tanx = \frac{4}{9}$ 

$$n = t a n' \left(\frac{1}{4}\right)$$

4-The number of roots of a quadratic equation

(b) Hence or otherwise find the set of values of p for which the equation  $4x^2 - 24x + p = 0$  has no real roots.

June2023 /12/Q3



Qx2+6n+C=0

(a) Find the set of values of k for which the equation  $8x^2 + kx + 2 = 0$  has no real roots.

Nov2022 /12/Q3

[2]

Find the value of this root.

(b) It is given that the equation  $16x^2 - 24x + 10 = k$ , where k is a constant, has exactly one root.

[2]

62-4QC = 0

(-24) -4 x 16 x (10-K) =0

Nov 2021 /11/Q2

5- Intersection of a line and a quadratic curve

Show that the curve with equation  $x^2 - 3xy - 40 = 0$  and the line with equation 3x + y + k = 0 meet for all values of the constant k.

y= -3n+k

 $3c^{2} + 9x^{2} + 3kx - 40 = 0$ 

 $10\pi^2 + 3k m - 40 = 0$ 

b2-4ac > 0

Nov 2024 /11/Q4

| The straight line $y = x + 5$ meets the curve $2x^2 + 3y^2 = k$ at a single point P. |     | March 2024 |
|--------------------------------------------------------------------------------------|-----|------------|
| (a) Find the value of the constant $\underline{k}$ .                                 | [4] | /12/Q1     |
| b2-4ac = 0                                                                           |     |            |
| (b) Find the coordinates of P.                                                       | [2] |            |

| A line has equation $y = 3x - 2k$ and a curve has equation $y = x^2 - kx + 2$ , where k is a constant. |     | March 2023 /12/Q1 |
|--------------------------------------------------------------------------------------------------------|-----|-------------------|
| Show that the line and the curve meet for all values of $k$ .                                          | [4] |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |
|                                                                                                        |     |                   |

| A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation $y = 4x + c$ , where c is a constant. |                |
|-----------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                 | 2022<br>/12/Q2 |
| Find the set of values of $c$ for which the curve and line intersect at two distinct points. [5]                |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |

| A curve has equation $y = kx^2 + 2x - k$ and a line has equation $y = kx - 2$ , where k is a constant. |     | Nov<br>2021 |
|--------------------------------------------------------------------------------------------------------|-----|-------------|
| Find the set of values of $k$ for which the curve and line do not intersect.                           | [5] | /11/Q2      |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |
|                                                                                                        |     |             |

| A line with equation $y = mx - 6$ is a tangent to the curve with equation $y = x^2 - 4x + 3$ .          | June           |
|---------------------------------------------------------------------------------------------------------|----------------|
| Find the possible values of the constant $m$ , and the corresponding coordinates of the points at which | 2021<br>/13/Q1 |
| the line touches the curve. [6]                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |
|                                                                                                         |                |

| _                                                                                                     |     |        |
|-------------------------------------------------------------------------------------------------------|-----|--------|
| A line has equation $y = 3x + k$ and a curve has equation $y = x^2 + kx + 6$ , where k is a constant. |     | March  |
| A line has equation y = 3x + k and a curve has equation y = x + kx + 0, where k is a constant.        |     | 2021   |
|                                                                                                       |     | /12/04 |
|                                                                                                       | 553 | /12/Q4 |
| Find the set of values of k for which the line and curve have two distinct points of intersection.    | [5] |        |
| •                                                                                                     |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |
|                                                                                                       |     |        |