Revision – Quadratics

Completing the square

3(x	$(-2)^2 + 2$ or $a = -2$, $b = 2$		B1	B1 2			Nov 2024 /13/Q8
- -2($(x \pm p)^2 \pm q$ or $-2(x \pm p)^2 \pm q$		I	M1*	p	≠ 0.	Nov 2024
-2($(x-2)^2 \pm q$ or $-2(x-2)^2 \pm q$			DM1			/12/Q7
-2($(x-2)^2 + 19$ and $(2, 19)$			A1	Ac	cept $x = 2, y = 19$ or 2, 19.	
(a)	$3(y-2)^2-27$ or $a=-2$, $b=-27$			3 B1	B1		June20 24 /11/Q1
4(x-	$(-3)^2$ seen or $a = 4$ and $b = -3$	B1				correct expression or their values	June 2023
-36 +	$p ext{ or } p - 36 ext{ seen or } c = p - 36$	B1 2	a, b and c	c. Condone	+(x-	3) + $p - 36 = 0$ and $4\left(\frac{p}{4} - 9\right)$.	/12/Q3
p-3	$6 > 0$ leading to $p > 36$ or $24^2 - 4 \times 4p \langle 0 \Rightarrow p \rangle 36$ or $36 < p$	B1	Allow (3	6,∞) or 36	< p <	< ∞ . Consider final answer only.	
(a)	$x^2 - 8x + 11 = (x - 4)^2 \dots \text{ or } p = -4$	1				given after their completed square the expression and ISW.	June20 22
	5 or q = -5		B1 2				/11/Q1
(b)	$(x-4)^2-5=1$ so $(x-4)^2=6$ so $x-4=[\pm]\sqrt{6}$		M1	Using their p	p and	q values or by quadratic formula	
	$x = 4 \pm \sqrt{6}$ or $\frac{8 \pm \sqrt{24}}{2}$			ISW decima	t have ds 1.5	ent. e ± for this mark. 5, 6.45 if exact answers seen. sible for correct answers.	
(a)	$2[\{(x-2)^2\} \ \{+3\}]$		2	B1 1	- 1	B1 for $a = 2$, B1 for $b = 3$. $2(x-2)^2 + 6$ gains B1B0	March 2022 /12/Q5
					2		
(a)	$\left\{-3(x-2)^2\right\}$ $\left\{+14\right\}$		B1 B1	B1 for ea	ach c	orrect term; condone $a = 2$, $b = 14$.	Nov20 21 /11/Q8
			2	: 			7117

(a)	${5(y-3)^2}$ {+5}			B1 B1	Accept $a = -3$, $b = 5$	Nov 2021 /13/Q3
				2		
(a)	$(4x-3)^2$ or $(4x+(-3))^2$ or $a=-3$	B1	$k(4x-3)^2$ where recovery.	k≠1 scores B0	but mark final answer, allow	June 2021
	+ 1 or b = 1	B1				/1 2/Q1
		2				
(b)	[For one root] $k = 1$ or 'their b'	B1 FT	Either by inspecting $24^2 - 4 \times 16 \times (10^4)$			
	[Root or $x = \frac{3}{4}$ or 0.75	B1	SC B2 for correc	t final answer	www.	
		2				1

The quadratic formula

$\left(x^2 - 2\right)^2 = 9 l$	leading to $x^2 - 2 = \pm 3$	M1	Must	be x^2 unless substitution is clear.	June2024 /11/Q1	
$x^2 = -1 \text{ or } x^2$	= 5	M1	Allow	omission of -1 if ±3 seen.	711/Q1	
x = ±√5		A1		C if M1M1 not awarded. Ignore \pm i, i, $-$ i, $\sqrt{-1}$. f calculator with no working scores $0/3$.		
Alternative m	nethod for Question 1(b)					
$3x^4 - 12x^2 -$	15 = 0 leading to $3(x^2-5)(x^2+1)[=0]$	(M1)				
$x^2 = -1 \text{ or } x^2$	= 5	(M1)		omission of -1 if factors seen. Factorising or other method.		
$x = \pm \sqrt{5}$		(A1)		C if M1M1 not scored. Ignore $\pm i$, i , $-i$, $\sqrt{-1}$. f calculator with no working scores $0/3$.		
		3			-	
(a) $x^2 - 8x$	$+11 = (x-4)^2 \dots \text{ or } p = -4$		B1	If p and q-values given after their completed square expression, mark the expression and ISW.	June 2022	
5 (or q = -5		B1		/11/Q1	
			2			
(b) $(x-4)^2$	$x^2 - 5 = 1$ so $(x - 4)^2 = 6$ so $x - 4 = [\pm]\sqrt{6}$		M1	Using their p and q values or by quadratic formula		
x = 4 ±	$\sqrt{6} \text{ or } \frac{8 \pm \sqrt{24}}{2}$		A1	Or exact equivalent. No FT; must have ± for this mark. ISW decimals 1.55, 6.45 if exact answers seen. If M0, SC B1 possible for correct answers.		
			2		` 	

Solving more complex quadratic equations

OR	$+215x^3 - 27 = 0$] leading to $(8x^3 - 1)(x^3 + 27)[= 0]$ $5 \pm \sqrt{215^2 - 4.8 27}$ or $\frac{-215 \pm \sqrt{47089}}{2.8}$	M1			titution is used then the correct coefficients must sed. Condone substitution of $x = x^3$.	June2023 /12/Q4
$\frac{1}{8}$,	- 27	A1			rect values seen. [0 scored SC B1 is available for sight of $\frac{1}{8}$ and	
			-27	OE		
$\frac{1}{2}$ or	: 0.5,–3	A1	corre	ect a	0SCB1 scored then SCB1 is available for the inswers and no others. Do not ISW if answers a range.	
		3				
						Nov2022 /12/Q3
x2 -	$4x+3 = mx-6$ leading to $x^2 - x(4+m) + 9$		*N	/11	Equating and gathering terms. May be implied on the next line.	June2022 /13/Q4
b ² -	$4ac$ leading to $(4+m)^2-4\times 9$		DN	/I1	SOI. Use of the discriminant with their a, b and c	
4 + n	$n = \pm 6 \text{ or}(m-2)(m+10) = 0$ leading to $m = 2 \text{ or} -10$		1	A1	Must come from $b^2 - 4ac = 0$ SOI	
Subst	titute both their m values into their equation in line 1		DN	/11		
m = 2	leading to $x = 3$; $m = -10$ leading to $x = -3$		1	A1		
(3, 0)	, (-3, 24)		4	A1	Accept 'when $x = 3$, $y = 0$; when $x = -3$, $y = 24$ ' If final A0A0 scored, SC B1 for one point correct WWW	
(a)	$6y+2-7y^{1/2}$ [= 0]		*M1	OE	Rearrange to a 3-term quadratic.	June2022
	$(2y^{\frac{1}{2}}-1)(3y^{\frac{1}{2}}-2) = 0 \text{ or e.g. } (2u-1)(3u-2) = 0$		DM1	Or	use of formula or completing the square.	/13/Q5
	$[y^{1/2}=]\frac{1}{2},\frac{2}{3}$		A1	An	swers only SC B1 if DM1 not scored.	
	$[y=]\frac{1}{4},\frac{4}{9}$		A1	An	swers only SC B1 if DM1 not scored.	
ı <u> </u>			4			
(b)	Use of $\tan x = their y$ values		М1	Mu	ist have at least 2 values of y from part (a).	
	x = 14[.0], 24[.0], x = 194[.0], 204[.0]	A	A1 1 FT		for 180 + angle (twice). VRT	
			3			

The number of roots of a quadratic equation

$4(x-3)^2$ seen or $a = 4$ and $b = -3$		- 1	OE Award marks for the correct expression or their values	June2023 /12/Q3
-36 + p or $p - 36$ seen or $c = p - 36$		B1	a, b and c. Condone $4(x-3) + p - 36 = 0$ and $4(\frac{p}{4} - 9)$.	/12/Q3
		2		
$p-36>0$ leading to $p>36$ or $24^2-4\times4p\langle0\Rightarrow p\rangle36$ or $36< p$		B1 .	Allow $(36,\infty)$ or $36 . Consider final answer only.$	
		1		
$k^2 - 4 \times 8 \times 2 \ [< 0]$	M1	Use	of $b^2 - 4ac$ but not just in the quadratic formula.	Nov2022 - /12/Q3
$-8 \le k \le 8 \text{ or } -8 \le k$, $k \le 8 \text{ or } k \le 8 \text{ or } (-8, 8)$	A1	Cor	adone '- 8 < k or k < 8', '- 8 < k and k < 8' but not $\sqrt{64}$.	712/23
	2			
$kx^2 + 2x - k = kx - 2$ leading to $kx^2 + (-k+2)x - k + 2 = 0$		*M1	Eliminate y and form 3-term quadratic. Allow 1 error.	Nov 2021
$(-k+2)^2 - 4k(-k+2)$		DM1	Apply $b^2 - 4ac$; allow 1 error but a , b and c must be correct for <i>their</i> quadratic.	/11/Q2
$5k^2 - 12k + 4$ or $(-k+2)(-k+2-4k)$		A1	May be shown in quadratic formula.	
(-k+2)(-5k+2)		DM1	Solving a 3-term quadratic in k (all terms on one side) by factorising, use of formula or completing the square. Factors must expand to give <i>their</i> coefficient of k^2 .	
$\frac{2}{5} < k < 2$		A1	WWW, accept two separate correct inequalities. If M0 for solving quadratic, SC B1 can be awarded for correct final answer.	
		5		

Intersection of a line and a quadratic curve

Substitute for y (or x) in first equation and simplify	*M1	All terms to one side and brackets expanded.	Nov
Obtain $10x^2 + 3kx - 40$ [= 0] (or $10y^2 + 11ky + k^2 - 360$ [= 0])	A1		2024 /11/Q4
Attempt $b^2 - 4ac$ for 3-term quadratic involving k	DM1	Not in quadratic formula unless $b^2 - 4ac$ is isolated.	
Obtain $9k^2 + 1600$ (or $81k^2 + 14400$)	A1		
$9k^2 + 1600 > 0$	A1 FT	FT for $ak^2 + b > 0$ with $a, b > 0$.	
	5		

(a)	Attempt substitution for y in quadratic equation		*M1	Or substitution for x	March
	Obtain $5x^2 + 30x + 75 - k = 0$ or $5y^2 - 20y + 50 - k = 0$		A1	OE e.g. $x^2 + 6x + 15 - \frac{k}{5}$ (all terms gathered together).	2024 /12/Q7
	Use $b^2 - 4ac = 0$ with their a, b and c		DM1	* = 0* may be implied in subsequent working or the answer.	
	Obtain $900-20(75-k)=0$ or equivalent and hence $k=30$		A1	obtaining $400-20(50-k)=0$ and $k=30$.	
			4		
b)	Substitute their value of k in equation from part (a) and attempt solu	ution	M1	Expect $5x^2 + 30x + 45[=0]$ or $5y^2 - 20y + 20[=0]$.	
	Obtain coordinates (-3, 2)		A1	SC B1 only (-3, 2) without attempt at quadratic solution.	
x ² -	$kx+2=3x-2k$ leading to $x^2-x(k+3)+(2+2k)[=0]$		2 M	3-term quadratic, may be implied in the discriminant.	March 2023
b ² –	$4ac = (k+3)^2 - 8(1+k)$ (ignore '= 0' at this stage)		DM	Cannot just be seen in the quadratic formula.	/12/Q1
=(k	$(-1)^2$ accept $(k-1)(k-1)$		A	Or use of calculus to show minimum of zero at $k = 1$ or sketch of $f(k) = k^2 - 2k + 1$.	
≥ 0	Hence will meet for all values of k		A	<u> </u>	
x ² +	$2cx+4=4x+c$ leading to $x^2+2cx-4x+4-c$ [=0]	*M		ate ys and move terms to one side of equation.	March
b ² -	$4ac = (2c-4)^2 - 4(4-c)$	DM	1 Use	of discriminant with their correct coefficients.	2022 /12/Q2
$4c^2$	$-16c + 16 - 16 + 4c = \int 4c^2 - 12c$	A	1		
b ² -	4ac > 0 leading to $(4)c(c-3) > 0$	М	1 Cor	rectly apply '> 0' considering both regions.	
c<(), c>3	A		st be in terms of c . B1 instead of M1A1 for $c \le 0$, $c \ge 3$	
			5		7.7
					Nov 2021 /11/Q2
(a)	$(4x-3)^2$ or $(4x+(-3))^2$ or $a=-3$	B1	k(4x -	$(-3)^2$ where $k \neq 1$ scores B0 but mark final answer, allow very.	June 2021
	+ 1 or <i>b</i> = 1	B1			/13/Q1
		2			
(b)	[For one root] $k = 1$ or 'their b'	B1 FT		r by inspection or solving or from $4 \times 16 \times (10 - k) = 0$ WWW	
	[Root or $x =]\frac{3}{4}$ or 0.75	B1	SC B	2 for correct final answer WWW.	
		2	+		

$x^2 + kx + 6 = 3x + k$ leading to $x^2 + x(k-3) + (6-k) = 0$	M1	Eliminate y and form 3-term quadratic.	March 2021
$(k-3)^2-4(6-k)[>0]$	M1	OE. Apply $b^2 - 4ac$.	/12/Q4
$k^2 - 2k - 15[> 0]$	A1	Form 3-term quadratic.	
(k+3)(k-5)[>0]	A1	Or $k = -3$, 5 from use of formula or completing square.	
k < -3, k > 5	A1 FT	Or any correct alternative notation, do not allow ≤, ≥. FT for <i>their</i> outside regions.	
	5		

	-			
1	$4(x-3)^2$ seen or $a = 4$ and $b = -3$	B1		Award marks for the correct expression or their values
	-36 + p or $p - 36$ seen or $c = p - 36$	B1	a, b	and c. Condone $4(x-3) + p - 36 = 0$ and $4\left(\frac{p}{4} - 9\right)$.
		2		
	$p-36>0$ leading to $p>36$ or $24^2-4\times4p\langle0\Rightarrow p\rangle36$ or $36< p$	B1	Allo	by $(36,\infty)$ or $36 . Consider final answer only.$
		1		
				9709/ June2023/12/Q3
2	$[8x^{6} + 215x^{3} - 27 = 0] \text{ leading to } (8x^{3} - 1)(x^{3} + 27)[= 0]$ OR $\frac{-215 \pm \sqrt{215^{2} - 4.8 27}}{2.8} \text{ or } \frac{-215 \pm \sqrt{47089}}{2.8}$	М	If	DE f a substitution is used then the correct coefficients must be retained. Condone substitution of $x = x^3$.
	$\frac{1}{8}$, -27	A	s	Both correct values seen. C: if M0 scored SC B1 is available for sight of $\frac{1}{8}$ and -27 OE
	$\frac{1}{2}$ or 0.5,-3	A	cc	C: if M0SCB1 scored then SCB1 is available for the orrect answers and no others. Do not ISW if answers given as a range.
			3	
				9709/ June2023/12/Q4
3	$x^2 - kx + 2 = 3x - 2k$ leading to $x^2 - x(k+3) + (2+2k) = 0$		М1	3-term quadratic, may be implied in the discriminant.
	$\frac{b^2 - 4ac = (k+3)^2 - 8(1+k) \text{ (ignore '= 0' at this stage)}}{b^2 - 4ac = (k+3)^2 - 8(1+k) \text{ (ignore '= 0' at this stage)}}$		DM1	Cannot just be seen in the quadratic formula.
	$=(k-1)^2$ accept $(k-1)(k-1)$		A1	Or use of calculus to show minimum of zero at $k = 1$ or sketch of $f(k) = k^2 - 2k + 1$.
	$\geqslant 0$ Hence will meet for all values of k		A1	Clear conclusion.
			4	

							9709/ March2023/12/Q1
4	k ² -	4×8×2 [<0]	M1	Use	of b ²	- 4 a	c but not just in the quadratic formula.
	-8 <	k < 8 or -8 < k, k < 8 or k < 8 or (-8, 8)	A1	Con	done '	- 8	$< k \text{ or } k < 8$ ', '- 8 < k and k < 8' but not $\sqrt{64}$.
			2				
		-					9709/ Nov2022/12/Q3
5	(a)	$x^2 - 8x + 11 = (x - 4)^2 \dots \text{ or } p = -4$			Е		If p and q-values given after their completed square expression, mark the expression and ISW.
		5 or q = -5			E	31	
						2	
	(b)	$(x-4)^2 - 5 = 1$ so $(x-4)^2 = 6$ so $x-4 = [\pm]\sqrt{6}$			M	"	Using their p and q values or by quadratic formula
		$x = 4 \pm \sqrt{6} \text{or} \frac{8 \pm \sqrt{24}}{2}$			A	1	Or exact equivalent. No FT; must have ± for this mark. ISW decimals 1.55, 6.45 if exact answers seen. If M0, SC B1 possible for correct answers.
						2	0700/ 1 2022/11/01
	(-)			3.51	201		9709/ June2022/11/Q1
6	(a)	$\{(x+1)^2+2(x+1)-5\}+\{3\}$, or $\{(x+1+1)^2\}+\{-6+3\}$		MI	M1	M1 f	for dealing with $\begin{pmatrix} -1\\0 \end{pmatrix}$ and M1 for dealing with $\begin{pmatrix} 0\\3 \end{pmatrix}$.
		$[y=]x^2+4x+1$			A1 Ans		wer only given full marks.
	(b)	{Stretch} {x direction or horizontally or y-axis invari	iant}{ fac	tor ½	3		B2, 1, 0 Additional transformation B0.
							2
	1						9709/ June2022/13/Q4
7	(a)	$6y + 2 - 7y^{1/2}$ [= 0]				*M1	OE Rearrange to a 3-term quadratic.
		$(2y^{\frac{1}{2}}-1)(3y^{\frac{1}{2}}-2) = 0 \text{ or e.g. } (2u-1)(3u-2) = 0$			I	OM1	Or use of formula or completing the square.
		$[y^{1/2}] = \frac{1}{2}, \frac{2}{3}$				A1	Answers only SC B1 if DM1 not scored.
		$[y=]\frac{1}{4},\frac{4}{9}$				A1	Answers only SC B1 if DM1 not scored.
						4	
	(b)	Use of $\tan x = their y$ values				M1	Must have at least 2 values of y from part (a).
		x = 14[.0], 24[.0], x = 194[.0], 204[.0]			A1		FT for 180 + angle (twice). AWRT
						3	I
	<u> </u>					Ι.	9709/ June2022/13/Q5
8	x ² +	$+2cx+4=4x+c$ leading to $x^2+2cx-4x+4-c$ [=0]			*M1	Eq	uate ys and move terms to one side of equation.
	b ² -	$-4ac = (2c-4)^2 - 4(4-c)$]	DM1	Us	e of discriminant with their correct coefficients.
	[4c	$^{2}-16c+16-16+4c=$ $4c^{2}-12c$			A1		
	b ² -	-4ac > 0 leading to $(4)c(c-3) > 0$			M1	Co	rrectly apply '> 0' considering both regions.
	c<	0, c>3			A1		ust be in terms of c . C B1 instead of M1A1 for $c \le 0$, $c \ge 3$
					5		
							9709/ March2022/12/Q2

9	(a)	$2[\{(x-2)^2\} \ \{+3\}]$]	B1 B1		or $a = 2$, B1 for $b = 3$. $(-2)^2 + 6$ gains B1B0
	_					2		9709/ March2022/12/Q5
10	kx² +	$-2x-k=kx-2$ leading to $kx^2+(-k+2)x-k+2 = 0$	*M	1 El	liminate	y and fo	rm 3-te	erm quadratic. Allow 1 error.
	(-k-	$(-2)^2 - 4k(-k+2)$	DM	1 4 2 1		– 4ac ; a r their qu		error but a , b and c must be
	5k ² -	-12k+4 or $(-k+2)(-k+2-4k)$	A	1 M	lay be sh	own in o	quadrat	ic formula.
	(-k-	+2)(-5k+2)	DM	fa	ctorising	g, use of	formul	ic in k (all terms on one side) by a or completing the square. ive <i>their</i> coefficient of k^2 .
	$\frac{2}{5} < k$	z<2	A	If	M0 for		quadrat	ate correct inequalities. ic, SC B1 can be awarded for
	_			5				9709/ Nov2021/11/Q2
11	(a)	$\left\{-3(x-2)^2\right\} \left\{+14\right\}$]	B1 B1	B1 for	each co	orrect term; condone $a = 2$, $b = 14$.
		[5(4 2)] [(11)						
	_				2			9709/ Nov2021/11/Q8
12	(a)	${5(y-3)^2}$ {+5}				В	1 B1	Accept $a = -3, b = 5$
							2	
								9709/ Nov2021/13/Q3
13	(a)	$(4x-3)^2$ or $(4x+(-3))^2$ or $a=-3$	Bl		$(x-3)^2$ vovery.	vhere <i>k</i> ≠	l scor	es B0 but mark final answer, allow
		+ 1 or b = 1	B1					
			2	,				
	(b)	[For one root] $k = 1$ or 'their b'	B1 FT			nspection 6 × (10 –		ving or from WWW
		$[\text{Root or } x =] \frac{3}{4} \text{ or } 0.75$	B1	SC	B2 for	correct fi	nal ans	wer WWW.
			2					
	_							9709/ June2021/12/Q1
14	$x^2 - 4$	$4x + 3 = mx - 6$ leading to $x^2 - x(4 + m) + 9$		*M1		ting and p be implie		ng terms. e next line.
	$b^2 - 4$	eac leading to $(4+m)^2 - 4 \times 9$		DM1	SOI.	Use of th	e discr	iminant with their a, b and
	4+m	= $\pm 6 \text{ or}(m-2)(m+10) = 0$ leading to $m=2 \text{ or}-10$		Al	Must	come fro	om <i>b</i> ² -	-4ac = 0 SOI
	Substi	itute both their m values into their equation in line 1		DM1	ı			
	m=2	leading to $x = 3$; $m = -10$ leading to $x = -3$		A1	ı			
	(3, 0),	(-3, 24)		Al	If fin		scored,	y = 0; when $x = -3$, $y = 24$ ' SC B1 for one point
								9709/ June2021/13/Q1

15	$x^2 + kx + 6 = 3x + k$ leading to $x^2 + x(k-3) + (6-k) = 0$	M1	Eliminate y and form 3-term quadratic.
	$(k-3)^2-4(6-k)[>0]$	M1	OE. Apply $b^2 - 4ac$.
	$k^2 - 2k - 15[> 0]$	A1	Form 3-term quadratic.
	(k+3)(k-5)[>0]	A1	Or $k = -3$, 5 from use of formula or completing square.
	k < -3, k > 5	A1 FT	Or any correct alternative notation, do not allow ≤, ≥. FT for <i>their</i> outside regions.
		5	
		5	9709/ March202