
Revision – Unit3 Coordinate Geometry

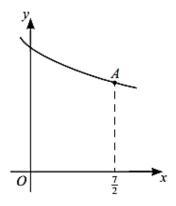
(Length of a line segment and midpoint, Parallel and perpendicular lines, Equations of straight lines, the equation of a circle, Problems involving intersections of lines and circles)

(b) Given that the curve passes through the point (4, 11), find the equation of the curve. [4]

Circles
$$C_1$$
 and C_2 have equations Nov/

$$x^2 + y^2 + 6x - 10y + 18 = 0 \text{ and } (x-9)^2 + (y+4)^2 - 64 = 0$$
Nov/

$$2024/Q6$$


respectively.

(a) Find the distance between the centres of the circles. [4]

P and Q are points on C_1 and C_2 respectively. The distance between P and Q is denoted by d.

(b) Find the greatest and least possible values of d.

[3]

Nov/ 11/ 2024/Q7

The diagram shows part of the curve with equation $y = \frac{12}{\sqrt[3]{2x+1}}$. The point A on the curve has coordinates $\left(\frac{7}{2}, 6\right)$.

(a) Find the equation of the tangent to the curve at A. Give your answer in the form y = mx + c. [4]

(b) Find the area of the region bounded by the curve and the lines $x = 0$, $x = \frac{7}{2}$ and $y = 0$. [4]					
The equation of a curve is $y = 2x^2 - 3$. Two points A and B with x-coordinates 2 and $(2+h)$ respectively lie on the curve.					

(a) Find and simplify an expression for the gradient of the chord AB in terms of h.

Nov/ 12/ 2024/Q3

[3]

(b)	Explain how the gradient of the curve at the point A can be deduced from the answer to part and state the value of this gradient.	(a), [2]	
The	equation of a circle is $x^2 + y^2 + px + 2y + q = 0$, where p and q are constants.		Nov/ 12/
(a)	Express the equation in the form $(x-a)^2 + (y-b)^2 = r^2$, where a is to be given in terms of p r^2 is to be given in terms of p and q.	and [2]	2024/Q8
T			
The (b)	line with equation $x+2y=10$ is the tangent to the circle at the point $A(4,3)$. (i) Find the equation of the normal to the circle at the point A .	[3]	
(D)	(1) Find the equation of the normal to the circle at the point A.	[3]	
(ii)	Find the values of p and q .	[5]	

Points A and B have coordinates $(4, 3)$ and $(8, -5)$ respectively. A circle with radius 10 passes through the points A and B.	
(a) Show that the centre of the circle lies on the line $y = \frac{1}{2}x - 4$	2024

The equation of a circle is $(x-3)^2 + y^2 = 18$. The line with equation y = mx + c passes through the point (0, -9) and is a tangent to the circle.

11/ 2024

June/

Find the two possible values of m and, for each value of m, find the coordinates of the point at which the tangent touches the circle.

/Q10

The equation of a circle is $(x-6)^2 + (y+a)^2 = 18$. The line with equation y = 2a - x is a tangent to the circle.

June/ 12/ 2024

(a) Find the two possible values of the constant a.

2024 [5] /Q7

(b)	For the greater value of a	t. find the equation of the	diameter which is perpe	endicular to the given
	For the greater value of a tangent.	,		[3]

A circle with equation $x^2 + y^2 - 6x + 2y - 15 = 0$ meets the y-axis at the points A and B. The tangents to the circle at A and B meet at the point P.

Find the coordinates of P.

[8] /Q8

A curve has the equation
$$y = \frac{3}{2x^2 - 5}$$
.

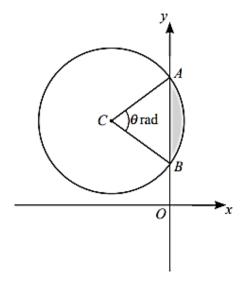
Find the equation of the normal to the curve at the point (2,1), giving your answer in the form /Q5
 $ax + by + c = 0$, where a , b and c are integers.

The straight line y = x + 5 meets the curve $2x^2 + 3y^2 = k$ at a single point *P*.

March/
12/

(a) Find the value of the constant *k*.

[4] $\frac{2024}{607}$


/Q7

(b) Find the coordinates of P.

March/ 12/ 2024

/Q10

[2]

The diagram shows the circle with centre C(-4, 5) and radius $\sqrt{20}$ units. The circle intersects the y-axis at the points A and B. The size of angle ACB is θ radians.

[3]

(b) Find the equation of the circle in the form
$$x^2 + y^2 + ax + by + c = 0$$
.

[2]

(c)	Find the value of θ correct to 4 significant figures.	[3]
(đ	Find the perimeter and area of the segment shaded in the diagram.	[4]
(4)	This the perimeter and area of the segment shaded in the diagram.	(*)