<u>Revision – Unit2 Functions</u>

(5 types of questions)

1-Type of Functions

(a)	Obtain $b=2$ and $c=\frac{3}{2}$		B1		Nov 2024
	Obtain $\frac{15}{2} - 2\left(x - \frac{3}{2}\right)^2$		В1		/11/Q 1
	State range is $y \le \frac{15}{2}$ or $f(x) \le \frac{15}{2}$ with \le given or clearly implied (not <)		B1 FT	Following their value of a.	
			3		
b)	State that reflection is in x-axis		B1	Accept transformations in any order.	
	State or imply that translation is by $\begin{pmatrix} -\frac{3}{2} \\ \frac{15}{2} \end{pmatrix}$ or equivalent		B1 FT	Following <i>their</i> values of <i>a</i> and <i>c</i> in part (a). Accept transformations in any order.	
(c)	Sketch the correct graph appearing in second and third quadrants only		2 B1		
	State that each y-value is associated with a single x-value or equivalent		B1	Accept passes the horizontal line test. Ignore passes the vertical line test.	
			2		
(d)	Sketch the correct graph with suitable labelling to distinguish the two curves		B1	Appearing in third and fourth quadrants only.	
	Draw the line $y = x$		B1	See above; no need to label the line.	
	Attempt correct process for finding the inverse function		M1	Allowing use of \pm and y so far.	
	Obtain $\frac{3}{2} - \sqrt{\frac{15}{4} - \frac{1}{2}x}$ or equivalent		A1	Must involve <i>x</i> at the conclusion.	
			4		
(a)(i)	$[f(-1)=] \frac{1}{3}$	В1	Condone 0	.333.	Nov 2024
		1			/12/
a)(ii)		B1		ng the correct mirror line.	Q5
		B1	in the third reflection i	shape: the curves should intersect in the first square quadrant. To the left of the point of intersection, the s below the original and crosses the x-axis. To the point of intersection, the reflection is to the right the	
		2			1

(a)(iii)	$\frac{2x+1}{2x-1} = y \implies 2x+1 = y(2x-1)$	M1*		ne given function and clearing of fractions. interchanged at this stage.		
	2xy - 2x = y + 1	DM1	Condone ± erro	ors during simplification.		
	$\frac{x+1}{2(x-1)}, \frac{-x-1}{2-2x}$	A1	Allow 'f-1' or 'fractions.	y =' but NOT ' $x =$ ', nor fractions within		
	[Domain of f^{-1} is] $x < 1$ B1 Accept $-\infty < x < 1$ or $(-\infty, 1)$, condone $[-\infty, 1]$					
	Alternative Method for Question 5(a)(iii)					
	$y = 1 + \frac{2}{2x - 1} \Rightarrow y - 1 = \frac{2}{2x - 1}$	M1*	M1* Equating y to the given function after division by Isolating the term in x. x and y may be interchanged at this stage.			
	$2x = \frac{2}{y-1} + 1$	DM1	Condone ± errors during simplification.			
	$\frac{1}{x-1} + \frac{1}{2}$	A1	OE Allow 'f ⁻¹ ' or 'y =' but NOT 'x =', nor fractions within fractions.			
	[Domain of f^{-1} is] $x < 1$	B1	Accept – ∞ < x <1 or (– ∞ , 1), condone [– ∞ , 1).			
		4				
b)	$gf\left(\frac{1}{4}\right) = -7$		B1			
	$\frac{2x+1}{2x-1} = -7$		M1	Equating $\frac{2x+1}{2x-1}$ to their $gf\left(\frac{1}{4}\right)$.		
	$[x=] \frac{3}{8}$			OE		
	Alternative solution for Question 5(b)		•			
	$gf\left(\frac{1}{4}\right) = -7$					
	$x = f^{-1}(-7)$			$x = f^{-1}\left(their gf\left(\frac{1}{4}\right)\right)$		
	$[x=] \frac{3}{8}$		A1	OE		
			3			

(a)	$3(x-2)^2 + 2$ or $a = -2$, $b = 2$				B1 B1		Nov 2024
					2		/13/Q8
(b)	2 or $k = 2$ or $k \ge 2$				B1FT	FT on their a. Do not accept $x = 2$ or $x \ge 2$.	
					1		
(c)	$3(x-2)^2 + 14 - 12 = y \Rightarrow (x-2)^2 = \frac{y-2}{3}$				М1	Using their completed square form.	
	$x = \left[\pm\right] \sqrt{\frac{y-2}{3}} + 2$				DM1		
	$f^{-1}(x) = \sqrt{\frac{x-2}{3}} + 2$				A1	OE, e.g. $y = \frac{\sqrt{3x-6}}{3} + 2$.	
d)	Finding $f^{-1}(29) = 5$		M1 (Or sol	$\frac{3}{\text{ving } f(x) = 2}$	9 [using their completed square form, OE].	
	Finding f ⁻¹ (their 5)				ving f(x) = t		
	x=3 A			If usin	g f(x) metho	1	
	Alternative solution for Question 8(d)						
					or $3(3x^2 - 12x + 14)^2 - 12(3x^2 - 12x + 14) + 14 = 29$. Allow if the '= 29' appears later in the working.		
	Solving as far as $9(x-2)^4 = 9$ or $x^2 - 4x + 3 = 0$	D		OE Or [27	$7](x^4 - 8x^3 +$	$-24x^2 - 32x + 15 = 0.$	
	x=3 only			WWW Only o		the first M1.	
(b)	Obtaining $(3(5x-1)-2)^2 + their k$		3 M		ay simplify om an inequ	and/or use k at this stage; k may have come ality in (a) .	Mar20 24
	Conclude $[fg(x)] \ge 8$ allow $[y] \ge 8$		A1 F	Fo	ollowing the	<i>ir</i> value of k ; must be \geqslant , not $>$. rate written description.	/12/Q9
			2	2			
(c)	State $g^{-1}(x) = \frac{1}{5}(x+1)$		В			be indicated as the inverse.	
	[h(x)=]7x+4		B1B	1 If	7x+4 only	, it must be clear that this is $h(x)$.	
	3						
(a)	1 /			B1	For curve in	n correct quadrant.	May20
					-	et including line $y=x$. asymptote closer to x axis than vertical is to y axis.	24 /11/Q6
				2			

d)]	$y^{2} = \frac{2}{(x-4)} \text{ leading to } y = [\pm] \sqrt{\frac{2}{x-4}} \text{ or } x = [\pm] \sqrt{\frac{2}{y-4}}$ $[f^{-1}(x)] = -\sqrt{\frac{2}{x-4}}$ $[x] = -2$ Because f^{-1} is always negative and f is always positive or curves do not intersect $[f^{-1}(x)] = (x+1)^{2}$	M1 A1 3 B1 1	positivalues canno	pt other correct answers e.g. 'f is only defined for ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values of the the same' or 'the x values cannot be the same'.	May20 24 /12/Q4
(a)	$[x] = -2$ Because f^{-1} is always negative and f is always positive or curves do not intersect $[f^{-1}(x) =](x+1)^2$	3 B1 1 B1	positivalues canno	ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values at be the same' or 'the x values cannot be the same'.	24
d)]	Because f^{-1} is always negative and f is always positive or curves do not intersect $[f^{-1}(x) =](x+1)^2$	B1 1 B1	positivalues canno	ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values at be the same' or 'the x values cannot be the same'.	24
d)]	Because f^{-1} is always negative and f is always positive or curves do not intersect $[f^{-1}(x) =](x+1)^2$	1 B1	positivalues canno	ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values at be the same' or 'the x values cannot be the same'.	24
(a)	$[f^{-1}(x)] = (x+1)^2$	B1	positivalues canno	ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values at be the same' or 'the x values cannot be the same'.	24
(a)	$[f^{-1}(x)] = (x+1)^2$		positivalues canno	ve values of x and f^{-1} is only defined for negative s of x ' or 'domains do not overlap' or 'the y values at be the same' or 'the x values cannot be the same'.	24
		1	C		24
			C		24
(b)			1		/12/04
(b)	. () 1 () 2 () 1 (21)				/12/Q4
	$0 < g(x) \le \frac{1}{2} \text{ or } g(x) > 0 \text{ and } g(x) \le \frac{1}{2} \text{ or } \left(0, \frac{1}{2}\right)$			On not allow $g(x) > 0, g(x) \le \frac{1}{2}$.	
				On not allow $g(x) > 0$ or $g(x) \le \frac{1}{2}$. Condone g or y in place of $g(x)$.	
1	g ⁻¹ does not exist because it is one to many or g ⁻¹ does not exist because it is not one to one. Or g ⁻¹ does not exist because g is not one to one or g ⁻¹ does not exist because g is many to one or g ⁻¹ does not exist because g fails the horizontal line test.		A	a correct statement followed by any further incorrect xplanation can be awarded B1.	
c)	$f\left(\frac{25}{16}\right) = \frac{1}{4}$		2 B1	SOI	
	$\frac{1}{\left(\sqrt{x}-1\right)^2+2} = \frac{1}{4}$		М1	Equating $\frac{1}{(\sqrt{x}-1)^2+2}$, or their 'simplified'	
				version, to their $f\left(\frac{25}{16}\right)$.	
	$\left[\left(\sqrt{x} - 1 \right)^2 + 2 = 4 \text{ leading to } \right] \qquad \sqrt{x} - 1 = \sqrt{2} \text{ leading to } x = \left(1 \pm \sqrt{2} \right)^2$		A1	Simplification as far as $x =$	
	Or $\left[x - 2\sqrt{x} + 1 + 2 = 4 \text{ leading to}\right] \qquad x - 2\sqrt{x} - 1 = 0 \text{ leading to } x = \left(1 \pm \sqrt{2}\right)^2$			Allow just + in the results because - can be disregarded at this stage. Can be implied by the final answer.	
	Or $\left[x - 1 = 2\sqrt{x} \text{ leading to } \right] \qquad x^2 - 6x + 1 = 0 \text{ leading to } x = \frac{6 \pm \sqrt{36 - 4}}{2}$	-		Note: $x = 1 \pm \sqrt{2}$ scores A0.	
	$3+2\sqrt{2}$		A1	Must discount the solution $3 - 2\sqrt{2}$.	
			4	1	

		,	1		May20	
)	Express $f(x)$ as: $a-(x-3)^2$ or $a-(3-x)^2$ where $a=\pm 19$ or ± 1	N	11	OE If the form $-f(x) = (x^2 - 6x - 10)$ is used the	/13/	
				form must be returned to $f(x) =$	Q11	
				Completed square form must give $-x^2$. Answers must come from completion of the square (not calculus or graphs).		
	$19-(3-x)^2$ or $19-(x-3)^2$	A	-	ОЕ		
	$f(x) \le 19$ or $y \le 19$ with \le , not $<$ or $-\infty < f(x) \le 19$ or $-\infty \le f(x) \le 19$ or $(-\infty, 19]$ or $[-\infty, 19]$	A1 F		Using <i>their</i> constant following the award of M1. SC B1 answer only or answer from a method not involving completion of the square.		
			3			
b)	$g^{-1}(x) = \frac{1}{4}(x - k)$		B1			
	$g^{-1}f(x) = \frac{1}{4}(10 + 6x - x^2 - k) = 4x + k$		M1	OE May use <i>their</i> completed square form for f(x).		
	Simplify the quadratic equation obtained from $g^{-1}f(x) = g(x)$ provided k is present and apply $b^2 - 4ac = 0$ to this quadratic equation			Expect $x^2 + 10x - 10 + 5k = 0$.		
	Obtain $100 - 4(5k - 10) = 0$ and hence $k = 7$		A1			
	Use their k to form and solve a quadratic in x	Г	M1	Allow if their quadratic has two solutions.		
	(-5,-13) only		A1	SC B1 if no method seen.		
	Alternative Method for first 4 marks					
	State $f(x) = gg(x)$		(B1)			
	gg(x) = 16x + 5k	(M1)			
	Apply $b^2 - 4ac = 0$ to quadratic equation obtained from $f(x) = gg(x)$	(*	M1)	Provided k is present.		
	100 - 4(5k - 10) = 0 and hence $k = 7$	((A1)			
			6			
Streto	ch: $(2x)^2 - 2(2x) + 5$ or $(x-1)^2 + 4$ leading to $(2x-1)^2 + 4$	M1	Rej	placing x by 2x.	Mar20	
Refle	extion: $(-2x)^2 - 2(-2x) + 5$ or $(-2x-1)^2 + 4$	M1	Rej	placing x by $-x$. FT on <i>their</i> stretch.	/13/ Q2	
treto	retch: $3\{(-2x)^2 - 2(-2x) + 5\}$ or $3\{(-2x-1)^2 + 4\}$ $2x^2 + 12x + 15$		Mu (str	ultiplying the whole function by 3. FT on <i>their</i> retch plus reflection).	Q2	
$12x^2$			A1			
		4				

2- The Domain and Range of a function

(a)	[y]≤-1		В	- 1	Accept f or $f(x) \le -1$, $-\infty < y \le -1$, $(-\infty, -1]$. Do not accept $x \le -1$.	Mar2023 /12/
				1		Q9
(b)	$y = -3x^2 + 2$ rearranged to $3x^2 = 2 - y$, leading to $x^2 = \frac{2 - y}{3}$ or	$y^2 = \frac{2-x}{3}$	<u>x</u> M	[1		
	$x = [\pm] \sqrt{\frac{2-y}{3}} \rightarrow [f^{-1}(x)] = \{-\} \left\{ \sqrt{\frac{2-x}{3}} \right\}$		A1 A	.1	A1 for minus, A1 for $\sqrt{\frac{2-x}{3}}$, allow $-\sqrt{\frac{x-2}{-3}}$.	
				3		
(c)	$fg(x) = -3(-x^2 - 1)^2 + 2$		М		SOI expect $-3x^4 - 6x^2 - 1$.	
	$gf(x) = -(-3x^2 + 2)^2 - 1$		М	11	SOI expect $-9x^4 + 12x^2 - 5$.	
	$fg(x) - gf(x) + 8 = 0$ leading to $6x^4 - 18x^2 + 12$ [= 0]	A	.1	OE		
	$[6](x^2-1)(x^2-2)[=0]$ or formula or completion of the square		М	11	Solving a 3-term quadratic equation in x^2 must be seen.	
	$x = -1$, $-\sqrt{2}$ only these two solutions			+	Allow $-\sqrt{1}$, $-1.41[4]$ Answers only SC B1.	
Stretc	h: $(2x)^2 - 2(2x) + 5$ or $(x-1)^2 + 4$ leading to $(2x-1)^2 + 4$		M1	Re	eplacing x by 2x.	Mar 2023
Reflec	etion: $(-2x)^2 - 2(-2x) + 5$ or $(-2x-1)^2 + 4$		M1	Re	eplacing x by $-x$. FT on <i>their</i> stretch.	/12/ Q2
Stretc	h: $3\{(-2x)^2 - 2(-2x) + 5\}$ or $3\{(-2x-1)^2 + 4\}$		MI		ultiplying the whole function by 3. FT on their retch plus reflection).	
$12x^{2}$	+12 <i>x</i> +15		A1			
(a)	Three points at the bottom of their transformed graph plotted at $y = 2$	B1	All 5 points	oft	the graph must be connected.	Nov2022 /12/
	Bottom three points of $\wedge \wedge$ at $x = 0$, $x = 1$ & $x = 2$	B1	Must be this	s sha	ape.	Q5
	All correct	B1	Condone ex	tra (cycles outside $0 \leqslant x \leqslant 2$.	
		3	or all 5 poin	nts c	cored, B1 available for \(\) in one of correct positions correctly plotted and not connected \(\oldsymbol{or} \) correctly he wrong position.	
(b)	[g(x) =] f(2x) + 1	B1 B1			or their final answer as follows: 1. Condone $y = \text{or } f(x) = .$	
(a)	$[f(x)] = \{-2(x+2)^2\} - \{5\}$		B1 B	1		Nov2022 /13/
				2		Q2
(b)	[f(x)] < -7		В		Allow $y < -7$, $(-\infty, -7)$ or less than -7 $-\infty \langle f(x) \langle -7, -7 \rangle f(x) \rangle - \infty$, $f < -7$	
				1		
(c)	$y = -2(x+2)^2 - 5 \rightarrow (x+2)^2 = \frac{-(y+5)}{2}$		М	- 1	Operations correct. Allow sign errors. FT their quadratic from (a).	
	$x = [\pm] \sqrt{\frac{-(y+5)}{2}} -2$				Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a) .	
	$[f^{-1}(x)] = -2 - \sqrt{\frac{-(x+5)}{2}} \text{ or } -2 - \sqrt{-\frac{(x+5)}{2}}$		A	1	Allow $[f^{-1}(x)] = -2 - \sqrt{\frac{x+5}{-2}}$.	
				3		

)(a)	$x \neq 1 \text{ or } x < 1, x > 1 \text{ or } (-\infty, 1), (1, \infty)$ $[x \in \mathbb{R}]$	B1	Must be 3	not $f^{-1}(x)$	or y. Do not acc	ept $1 < x < 1$.		June2022	
		1						/12/ Q10	
)(b)	$y = \frac{2x+1}{2x-1}$ leading to $(2x-1)y = 2x+1$ leading to $2xy - y = 2x+1$	*M1	Setting y	, removing	fraction and exp	oanding brackets.		Q10	
	2xy - 2x = y + 1 leading to $2x(y - 1) = y + 1$	DM1	Reorganis	ing to get x =	. Condone ± sig	gn errors only.			
	leading to $x = \frac{y+1}{2(y-1)}$								
	$[f^{-1}(x)] = \frac{x+1}{2(x-1)}, \frac{x+1}{x-1} \times \frac{1}{2} \text{ or } \frac{1}{x-1} + \frac{1}{2}$	A1	OE. Must	be in terms o	f x. Do not allo	$\mathbf{w} \frac{x+1}{x-1} \div 2.$			
		3							
)(c)	(their $f^{-1}(3)$) leading to $(their f^{-1}(3))^2 + 4$ $[f^{-1}(3) = 1, 1 + 4 =]$	M1	Correct or	der of operati	ions and substit	ution of $x = 3$ needed.			
	5	A1							
		2							
)(d)	Sight of 'not one to one' or 'many to one' or 'one to many'	B1	gives 2 va	lues or horizo	ontal line test cr	and —, such as: square roo rosses curve twice or values because it is a	ot		
D(e)	$f(x)=1+\frac{2}{2x-1}=\frac{2x-1}{2x-1}+\frac{2}{2x-1}=\frac{2x+1}{2x-1}$	1 B1	AG Do not cor	done equating	g expressions a	nd verification.	_		
	$f'(x) = -4(2x-1)^{-2}$ or $2(2x-1)^{-1} + \left\{ -(2x+1)2(2x-1)^{-2} \right\}$ or $\frac{(2x-1)2 - 2(2x+1)}{(2x-1)^2}$	*M1		For $k(2x-1)^{-2}$ and no other terms or correct use of the product or quotient rule then ISW.					
	Gradient $m = -4$	A1	Differentia	tion must hav	e clearly taken	place.	-		
	Equation of tangent is $y-3=-4(x-1)$ [$\Rightarrow y=-4x+7$]	DM1	Using (1, 3	in the equat	ion of a line wi	th their gradient.	-		
	Crosses axes at $\left(\frac{7}{4},0\right)$ and $\left(0,7\right)$	A1 FT	SOI from	<i>heir</i> straight l	ine or by integr	ration from 0 to 'their 7/4'.			
	[Area =] $\frac{49}{8}$	A1		3 AWRT. DM0, SC B2	available for co	rrect answer.			
(b)	{Translation} ${2}$ OR {Stretch} { y direction} {factor 2}	6			correct, B1 with	h two elements correct. {}		Mar2022 /12/	
	{Stretch} {y direction} {factor 2} OR {Translation} ${2}$ {6}				correct, B1 with	h two elements correct. {}	-	Q5	
			4						
(b)	[k=] 2				Bi	Allow $[x] \leq 2$.		Nov2021 /11/	
					1	1		Q8	

(c)	[Range is] $[y] \leqslant -13$	B1	Allow $[f(x)] \le$	$(-13, [f] \le -13 \text{ but NOT } x \le -13.$		
		1			_	
(d)	$y = -3(x-2)^2 + 14$ leading to $(x-2)^2 = \frac{14-y}{3}$	М1	Allow $\frac{y-14}{-3}$. opposite sides	Allow 1 error in rearrangement if x , y on .	_	
	$x = 2(\pm)\sqrt{\frac{14 - y}{3}}$	A1	Allow $\frac{y-14}{-3}$.		_	
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x}{x}$ square root on	$\frac{-14}{-3}$. Must be x on RHS; must be negative $\frac{-14}{-3}$.		
	Alternative method for question 8(d)				_	
	$x = -3(y-2)^2 + 14$ leading to $(y-2)^2 = \frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. opposite sides	Allow 1 error in rearrangement if x , y on .	_	
	$=2(\pm)\sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$.		_	
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x}{x}$ square root on	$\frac{-14}{-3}$. Must be x on RHS; must be negative $\frac{1}{3}$.	_	
(e)	$[g(x) =] \left\{-3(x+3-2)^2\right\} + \left\{14+1\right\}$	3	B2, 1, 0	OR $\left\{-3(x+3)^2\right\} + \left\{12(x+3)\right\} + \left\{3\right\}$		
	$g(x) = -3x^2 - 6x + 12$		B1		_	
(-)	[3			27 2021
(a)	f(5)=[2] and f(their 2)=[5] OR ff(5)= $\left[\frac{2+3}{2-1}\right]$ OR $\frac{\frac{x+3}{x-1}+3}{\frac{x+3}{x-1}-1}$ and an attempt to substitute $x=5$.		M1 Cl	ear evidence of applying f twice with :	. – 3.	Nov2021 /12/ Q3
	5		A1			
(b)	$\frac{x+3}{x-1} = y \Rightarrow x+3 = xy - y \text{ OR } \frac{y+3}{y-1} = x \Rightarrow y+3 = xy - x$	*M1	Setting f(x) expanding b	= y or swapping x and y , clearing of fractionackets. Allow \pm sign errors.	ons and	
	$xy - x = y + 3 \Rightarrow x = \frac{y+3}{y-1}$ OE OR $y+3 = xy - x \Rightarrow y = \left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or	$y =$. Allow \pm sign errors.		
	$[f^{-1}(x) \text{ or } y] = \frac{x+3}{x-1}$	A1	OE e.g. 1+	$\frac{4}{x-1}$ etc. Must be a function of x, cannot be	be $x = $.	
		3				
(a)	$y = \Gamma^{1}(x)$		be implie	ion of the given curve in $y = x$ (the line $y = x$) d by position of curve).	x can	Nov2021 /13/ Q6
			1			

(b)	$y = \frac{-x}{\sqrt{4 - x^2}}$ leading to $x^2 = y^2 (4 - x^2)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y	
	$x^2(1+y^2) = 4y^2$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.	
	$x = (\pm) \frac{2y}{\sqrt{1 + y^2}}$	DM1	$x = (\pm)\sqrt{\left(\frac{4y^2}{(1+y^2)}\right)}$ OE is acceptable for this mark.	
			Isolating the new subject. Order of operations correct. Condone sign errors.	
	$f^{-1}(x) = \frac{-2x}{\sqrt{1+x^2}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.	
		4		
(c)	1 or <i>a</i> = 1	B1	Do not allow $x = 1$ or $-1 < x < 1$	
		1		
(d)	$[fg(x) = f(2x) =]\frac{-2x}{\sqrt{4-4x^2}}$	В1	Allow $\frac{-2x}{\sqrt{4-(2x)^2}}$ or any correct unsimplified form.	
	$fg(x) = \frac{-x}{\sqrt{1-x^2}} \text{ or } \frac{-x}{1-x^2} \sqrt{1-x^2} \text{ or } \frac{x}{x^2-1} \sqrt{1-x^2}$	B1	Result of cancelling 2 in numerator and denominator.	
		2		
				Nov2021
				/13/
				Q6

3- Inverse Functions

4-Composite Functions

1
İ

5- Transformations of functions

<u> </u>	